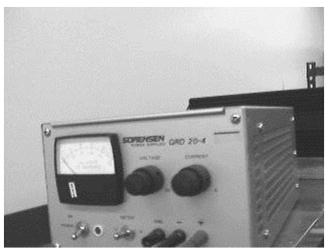
Image Patches

Point and Patch features

- Want to find distinctive points or patches in the image
 - Could match these features to a 3D model, for object recognition
 - Or track them from one image to another, for motion or structure estimation
- Want patches that are locally unique
 - Good types of features: bright dots, corners
 - Bad types of features: regions with constant value, or long straight edges
- We will look at
 - Moravec interest operator
 - KIT corner detector
 - How to match features between images
 - SIFT (Scale invariant feature transform)



Moravec Interest Operator

 Find points where the local variance in vertical, horizontal, and diagonal directions are all high

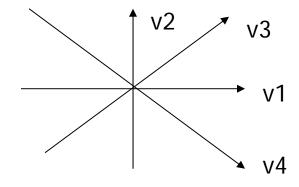
v1 = variance for horizontal pixels I(x-w,y):I(x+w,y)

v2 = variance for vertical pixels I(x,y-w):I(x,y+w)

v3 = variance for diagonal pixels I(x-w,y-w):I(x+w,y+w)

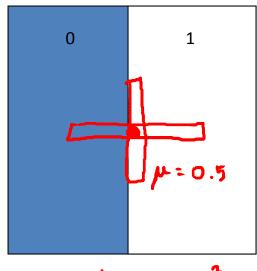
v4 = variance for diagonal pixels I(x+w,y-w):I(x-w,y+w)

Interest value = min(v1,v2,v3,v4)



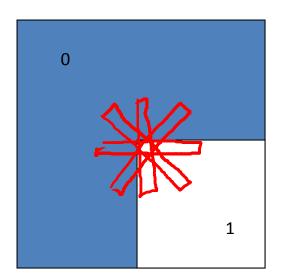
Examples

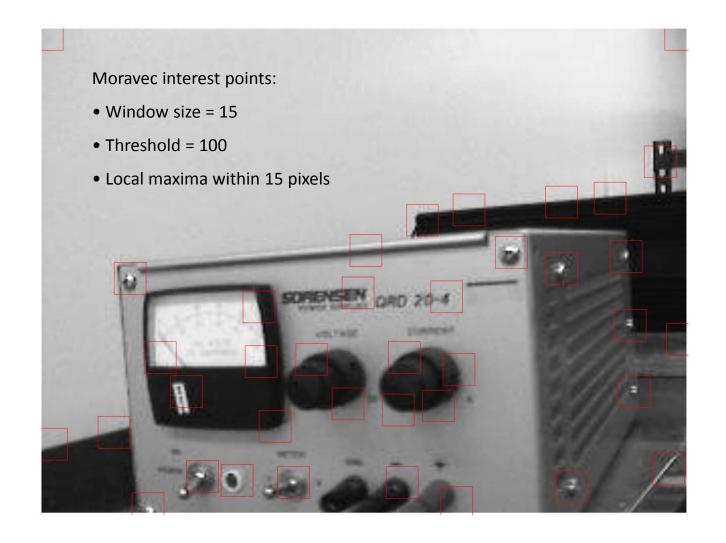
- Moravec interest operator score is low
 - In uniform regions
 - Along vertical or horizontal step edges
- The score is high at corners



$$V_{LIORY2} = \frac{1}{N} \sum_{i} (x_i - \mu)^2 \qquad V_{VERT} = 0$$

$$= \frac{1}{N} \left(\frac{N}{2} \right) (-.5)^2 + \frac{1}{N} \left(\frac{N}{2} \right) (.5)^2 = .25$$





Notes on Implementation

- Recall definition of variance, and its alternative formulation
- Rather than numerous nested for-loops, can use Matlab's vector and array operators
- Approach:
 - Compute mean of local window at each point
 - Compute square at each point, and local sum
 - Combine to get local variance

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2} \qquad \mu = \frac{1}{N} \sum_{i=1}^{N} x_{i}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (x_{i}^{2} - 2\mu x_{i} + \mu^{2})$$

$$= \frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} - \frac{2\mu}{N} \sum_{i=1}^{N} x_{i} + \frac{\mu^{2}}{N} \sum_{i=1}^{N} 1$$

$$= \frac{1}{N} \sum_{i=1}^{N} x_i^2 - 2\mu^2 + \mu^2$$

$$= \frac{1}{N} \sum_{i=1}^{N} x_i^2 - \mu^2$$

Matlab Implementation

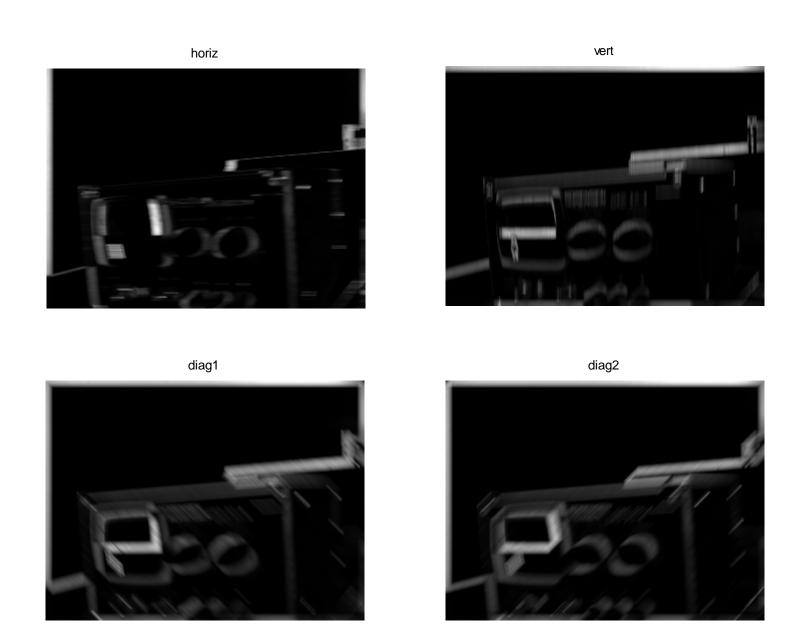
Example for horizontal (1xN) window

```
hh = ones(1,N);
uh = (1/N)*imfilter(I, hh); % mean of horizontal
Isq = I .^2;
hh
      Ι
                       u2h
            uh
                  Isq
                               varh
```

Then compute variances in other directions, and take use Matlab's min function

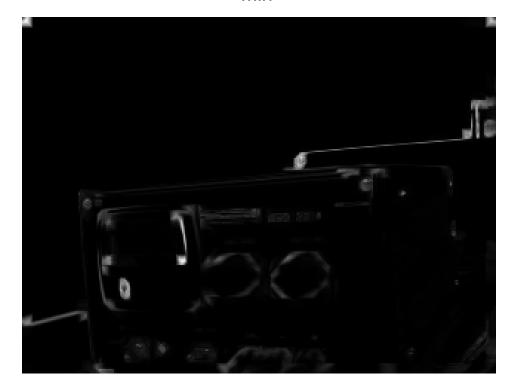
This will produce an image of interest point scores at each pixel

```
% Detect interest points using Moravec operator
clear all
close all
I1 = double(imread('test000.jpg'));
N = 15;
hv = hh';
               % vertical
hd2 = fliplr(hd1); % diagonal2
uh = (1/N)*imfilter(I1, hh); % mean of horizontal
uv = (1/N)*imfilter(I1, hv); % mean of vertical
ud1 = (1/N)*imfilter(I1, hd1); % mean of diagonal1
ud2 = (1/N)*imfilter(I1, hd2); % mean of diagonal2
I1sq = I1 .^2;
u2h = (1/N)*imfilter(I1sq, hh); % mean of horizontal squares
u2v = (1/N)*imfilter(I1sq, hv); % mean of vertical squares
u2d1 = (1/N)*imfilter(Ilsq, hd1); % mean of diagonal1 squares
u2d2 = (1/N)*imfilter(I1sq, hd2); % mean of diagonal2 squares
varh = u2h - uh.^2;
                   % variance of horizontal
varv = u2v - uv.^2;
                     % variance of vertical
Iinterest = min(min(varh, varv), min(vard1, vard2));
```



EGGN 512 Computer Vision Colorado School of Mines, Engineering Division Prof. William Hoff

Minima of the four directions



EGGN 512 Computer Vision Colorado School of Mines, Engineering Division Prof. William Hoff

Problem with Moravec

